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ELECTRICITY MARKET Electricity Restructuring 
Electricity restructuring presents twin challenges with a broad theme. 
 
 
 Create an effective electricity market design with associated transmission access rules. 

 
o An electricity market must be designed. 
o The market cannot solve the problem of market design. 
o Incentives should drive decisions and innovation. 

 
 
 Provide compatible market interventions to compensate for market imperfections. 

 
o Market imperfections exist under the best designs. 
o Network interactions make the obvious answers wrong or even dangerous. 
o Poor market design makes interventions more necessary, more common, and more difficult. 

 
 
There is a close connection between the twin challenges, and the slippery slope of intervention can 
lead to an electricity market that may be worse than the system it was to replace. 
 
 

If the central planners (or regulators) know what to do, then do it. 
But if true, what is the need for electricity restructuring and markets? 
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ELECTRICITY MARKET Energy Market Design 
The U.S. experience illustrates successful market design and remaining challenges for both theory 
and implementation. 

 Design Principle: Integrate Market Design 
and System Operations 
Provide good short-run operating incentives. 
Support forward markets and long-run 
investments. 

 Design Framework: Bid-Based, Security 
Constrained Economic Dispatch 
Locational Marginal Prices (LMP) with 
granularity to match system operations. 
Financial Transmission Rights (FTRs).  

 Design Implementation: Pricing Evolution 
Better scarcity pricing to support resource 
adequacy.  
Unit commitment and lumpy decisions with coordination, bid guarantees and uplift payments. 

 Design Challenge: Infrastructure Investment 
Hybrid models to accommodate both market-based and regulated transmission investments. 
Beneficiary-pays principle to support integration with rest of the market design. 
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ELECTRICITY MARKET Coordination 
The independent system operator provides a dispatch function.  Three questions remain.  Just say 
yes, and the market can decide on the split between bilateral and coordinated exchange. 
 

• Should the system operator be allowed to offer an economic dispatch service for some 
plants? 

 
 The alternative would be to define a set of administrative procedures and rules for system 
balancing that purposely ignore the information about the costs of running particular plants.  It seems more 
natural that the system operator considers customer bids and provides economic dispatch for some plants. 
 

• Should the system operator apply marginal cost prices for power provided through the 
dispatch? 

 
 Under an economic dispatch for the flexible plants and loads, it is a straightforward matter to 
determine the locational marginal costs of additional power.  These marginal costs are also the prices that 
would apply in the case of a perfect competitive market at equilibrium.  In addition, these locational 
marginal cost prices provide the consistent foundation for the design of a comparable transmission tariff. 
 

• Should generators and customers be allowed to participate in the economic dispatch 
offered by the system operator? 

 
 The natural extension of open access and the principles of choice would suggest that participation 
should be voluntary.  Market participants can evaluate their own economic situation and make their own 
choice about participating in the operator's economic dispatch or finding similar services elsewhere. 
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ELECTRICITY MARKET Pool Dispatch 
An efficient short-run electricity market determines a market clearing price based on conditions of 
supply and demand balanced in an economic dispatch.  Everyone pays or is paid the same price.  
The same principles apply in an electric network. (Schweppe, Caramanis, Tabors, & Bohn, 1988) (Hogan, 1992) 
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LOCATIONAL  SPOT  PRICE  OF  "TRANSMISSION"

Pa = 51

Pc = 55

Pb = 66

Price of "Transmission" from A to B = Pb - Pa = 15
Price of "Transmission" from C to A = Pa - Pc = -4

Price differential =
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+ Constraint prices
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NETWORK INTERACTIONS Locational Spot Prices 
The natural extension of a single price electricity market is to operate a market with locational spot 
prices.  

 
 It is a straightforward matter to compute "Schweppe" spot prices based on marginal costs at each 

location. 
 

 Transmission spot prices arise as the difference in the locational prices. 
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ELECTRICITY MARKET A Consistent Framework 
The example of successful central coordination,  CRT, Regional Transmission Organization (RTO) 
Millennium Order (Order 2000) Standard Market Design (SMD) Notice of Proposed Rulemaking 
(NOPR),  “Successful Market Design” provides a workable market framework that is working in 
places like New York, PJM in the Mid-Atlantic Region, New England, the Midwest, California, SPP, 
and Texas.  This efficient market design is under (constant) attack. 

 
 
 
Poolco…OPCO…ISO…IMO…Transco…RTO… 
ITP…WMP…: "A rose by any other name …" 
“Locational marginal pricing (LMP) is the 
electricity spot pricing model that serves as 
the benchmark for market design – the 
textbook ideal that should be the target for 
policy makers. A trading arrangement based 
on LMP takes all relevant generation and 
transmission costs appropriately into account 
and hence supports optimal investments.” 
(International Energy Agency, 2007)   
 

This is the only model that can meet the tests of open access and non-discrimination. 
Anything that upsets this design will unravel the wholesale electricity market.  The basic economic dispatch 
model accommodates the green energy agenda, as in the expanding Western Energy Imbalance Market 
(EIM). 
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ELECTRICITY MARKET A Consistent Framework 
The basic model covers the existing Regional Transmission Organizations and is expanding 
through the Wester Energy Imbalance Market.  (www.westerneim.com) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(IRC Council and CAISO maps) 
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ELECTRICITY MARKET Day-Ahead Commitments 
Organized electricity markets utilize day-ahead markets with bid-in loads and generation offers.  In 
addition, day-ahead markets include a reliability commitment to ensure that adequate capacity will 
be available in real time to meet the actual load. 
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ELECTRICITY MARKET ELMP Real-Time Pricing 
The unit commitment problem implies discrete choices that create non-convexities and 
computational problems.  A stylized version of the unit commitment and dispatch problem for a 
fixed demand y  as formulated in (Gribik, Hogan, & Pope, 2007): 
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ELECTRICITY MARKET Energy Pricing and Uplift 
Selecting the appropriate approximation model for defining energy and uplift prices involves 
practical tradeoffs.  All involve “uplift” payments to guarantee payments for bid-based cost to 
participating bidders (generators and loads), to support the economic commitment and dispatch. 
 

Uplift with Given Energy Prices=Optimal Profit – Actual Profit 
 

 Restricted Model (r) 
 

o Fix the unit commitment at the optimal solution. 
o Determine energy prices from the convex economic dispatch. 
 

 Dispatchable Model (d) 
 

o Relax the discrete constraints and treat commitment decisions as continuous. 
o Determine energy prices from the relaxed, continuous, convex model. 
 

 Extended Locational Marginal Pricing (ELMP) Model (h) 
 

o Equivalent formulations 
 Select the energy prices from the convex hull of the cost function. 
 Select the energy prices from the Lagrangean relaxation (i.e., usual dual problem for 

pricing the joint constraints). 
o Resulting energy prices minimize the total uplift. 
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Comparison of Example Marginal Costs 

Implied Marginal Cost

0

20

40

60

80

100

120

140

0 100 200 300 400 500

Load

M
ar

gi
na

l C
os

t (
$/

M
W

h)

MC r
MC h

MC d

ELECTRICITY MARKET Extended LMP 
Comparing illustrative energy pricing and uplift models. (Gribik et al., 2007) 
 

Comparison of Example Uplift Costs 
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Both the relaxed dispatchable and ELMP models produce a “standard” implied supply curve.  The 
ELMP model produces the minimum uplift. 
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ELECTRICITY MARKET Energy Pricing and Uplift 
Alternative pricing models have different features and raise additional questions. 
 

 Computational Requirements.  Dispatchable model is the easiest case, ELMP model the hardest.  
But not likely to be a significant issue.  Approximate solutions (e.g., NYISO model) may be workable. 

 Network Application.  All models compatible with network pricing and reduce to standard LMP in 
the convex case. 

 Operating Reserve Demand.  All models compatible with existing and proposed operating reserve 
demand curves. 

 Solution Independence.  Restricted model sensitive to actual commitment.  Relaxed and ELMP 
models (largely) independent of actual commitment and dispatch. 

 Financial Transmission Rights.  Transmission revenue collected under the market clearing solution 
would be sufficient to meet the obligations under the FTRs.  However, this may not be true for the 
revenues under the economic dispatch, which is not a market clearing solution at the ELMP prices, 
even though the FTRs are simultaneously feasible.  The FTR uplift amount included in the 
decomposition of the total uplift that is minimized by the ELMP prices.  This uplift payment would be 
enough to ensure revenue adequacy of FTRs under ELMP pricing.1 

 Day-ahead and real-time interaction.  With uncertainty in real-time and virtual bids, expected real-
time price is important, and may be similar under all pricing models. 

                                            

1  (Cadwalader, Gribik, Hogan, & Pope, 2010), “Extended LMP and Financial Transmission Rights.”  
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ELECTRICITY MARKET Pricing and Demand Participation 
Early market designs presumed a significant demand response.  Absent this demand participation 
most markets implemented inadequate pricing rules equating prices to marginal costs even when 
capacity is constrained.  This produces a “missing money” problem.  (Joskow, 2008) 
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ELECTRICITY MARKET Resource Adequacy 
Different Regions have taken different approaches to achieving resource adequacy. 

 
(Spees, Newell, & Pfeifenberger, 2013, p. 4) 
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ELECTRICITY MARKET Subsidies and Market Design 
The expansion of subsidy systems has implications for electricity market design.  
 

“The most market-oriented solution with the greatest transparency, simplicity, and, perhaps, 
efficiency would be to transition over time to an energy-only market. Assuming the scarcity 
pricing level is set at the appropriate level (the value of lost load), it addresses the “missing 
money” problem and eliminates the need for a capacity market. But I recognize that it would 
be a big step for a wholesale market operator to propose an energy-only market – only 
ERCOT has adopted this design – and that some may be concerned about the politics of 
scarcity pricing. The trade-off for critics concerned about costs, however, is that there would 
not be a capacity market. A decade ago, in the aftermath of the Western Power Crisis, there 
would have been little appetite for an energy-only market. Now, however, the wholesale 
market operators, market monitors, and FERC do much better market monitoring, FERC has 
an anti-manipulation authority, and natural gas is abundant and low priced, so there should 
be less price volatility in most regions.” (Commissioner Norman Bay concurrence) (FERC, 
2017, p. 7) 
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ELECTRICITY MARKET Operating Reserve Demand 
Operating reserve demand curve would reflect capacity scarcity. 

 

Illustrative Reserve Demand

Q(MW)

Reserve
Demand

P ($/MWh)
$20,000

$10,000

$30

There is a minimum level of operating reserve (e.g., 3%) to protect 
against system-wide failure.  Above the minimum reserve, reductions 
below a nominal reserve target (e.g., 7%) are price senstive.

3%

7% 

Energy
Demand



 

  17

ELECTRICITY MARKET Generation Resource Adequacy 
Market clearing addresses the “missing money” that results from inadequate scarcity pricing. 
 
 

Normal "Energy Only" Market Clearing 
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ELECTRICITY MARKET Operating Reserve Demand 
Operating reserve demand is a complement to energy demand for electricity.  The probabilistic 
demand for operating reserves reflects the cost and probability of lost load. 2 
 

Example Assumptions 
 
Expected Load (MW) 34000
Std Dev % 1.50%
Expected Outage % 0.45%
Std Dev % 0.45%

Expected Total (MW) 153
Std Dev (MW) 532.46
VOLL ($/MWh) 10000  
 
Under the simplifying assumptions, if 
the dispersion of the LOLP distribution 
is proportional to the expected load, the 
operating reserve demand is 
proportional to the expected load.

                                            
2  “For each cleared Operating Reserve level less than the Market-Wide Operating Reserve Requirement, the Market-Wide Operating 
Reserve Demand Curve price shall be equal to the product of (i) the Value of Lost Load (“VOLL”) and (ii) the estimated conditional probability of a 
loss of load given that a single forced Resource outage of 100 MW or greater will occur at the cleared Market-Wide Operating Reserve level for 
which the price is being determined.  … The VOLL shall be equal to $3,500 per MWh.”  MISO, FERC Electric Tariff, Volume No. 1, Schedule 28, 
January 22, 2009, Sheet 2226. 
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ELECTRICITY MARKET Operating Reserve Demand 
The deterministic approach to security constrained economic dispatch includes lower bounds on 
the required reserve to ensure that for a set of monitored contingencies (e.g., an n-1 standard) 
there is sufficient operating reserve to maintain the system for an emergency period. 
 
Suppose that the maximum 
generation outage contingency 
quantity is  Minr .  Then we would 
have the constraint: 

.Minr r  

In effect, the contingency 
constraint provides a vertical 
demand curve that adds 
horizontally to the probabilistic 
operating reserve demand 
curve. 
 

If the security minimum will 
always be maintained over the 
monitored period, the marginal 
price at r=0 applies.  If the 
outage shocks allow excursions 
below the security minimum 
during the period, the reserve 
price starts at the security minimum. 
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ELECTRICITY MARKET ERCOT Scarcity Pricing 
ERCOT launched implementation of the ORDC in in 2014.  The summer peak is the most important 
period.  The first three years results showed high availability of reserves and low reserve prices.   
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Resmi Surendran, ERCOT, EUCI Presentation, April 10, 2017.  The ORDC is illustrative. See also (Hogan & Pope, 2017) 



 

  21

ELECTRICITY MARKET Markets and Scarcity Pricing 
Other RTOs have long used ORDCs, but without building the design on basic principles. 

 Limited to Declared Shortage Conditions.  “The ORDCs PJM currently utilizes were designed 
under the assumption that shortage pricing would only occur during emergency operating conditions 
and therefore the curves are a step function.”  (PJM and SPP, “Joint Comments Of PJM Interconnection, L.L.C And 
Southwest Power Pool, Inc. Addressing Shortage Pricing,” FERC Docket No. RM15-24-000, November 30, 2015.) 

 Based on the Cost of Supply, not the Value of Demand.  “[T]he $300/MWh price is appropriate 
for reserves on the second step of the proposed ORDC based on an internal analysis of offer data 
for resources that are likely to be called on to provide reserves in the Operating Day.” (PJM, Proposed 
Tariff Revisions of PJM Interconnection, L.L.C., Docket No. ER15-643-000, December 17, 2014) 
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ELECTRICITY MARKET Missing Money 
Simulations for ERCOT market illustrate the connection between the missing money and reliability 
standards.  The Texas PUC adopted the economic equilibrium approach.  (Anderson, 2017) 

 
 

(Spees et al., 2013, p. 7)  See also (Telson, 1973) (Wilson, 2010) 
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ELECTRICITY MARKET Efficient Market Design 
No design can be perfect, but the record indicates the high costs of ignoring first principles.  When 
“good enough” is good enough, the costs of the unintended consequences can be high.  The 
examples from scarcity pricing, demand response, transmission expansion and the cleaner energy 
are illustrative but not exhaustive.  Many other areas present similar challenges. 
 

 Out-of-Market Transactions and Price Formation.  (Hogan, 2014) 
 Renewable Portfolio Standards. (Schmalensee, 2012) 
 Net Energy Metering. (Brown & Bunyan, 2014) 
 Market Manipulation.  (Lo Prete & Hogan, 2014) 
 Reforming the Energy Vision. (NYS Department of Public Service, 2014) (Caramanis, Ntakou, Hogan, Chakrabortty, & 

Schoene, 2016) 
 Hidden Values and the Value Stack. (NYS Department of Public Service, 2016)  

 Virtual Bidding and Financial Trading. (Hogan, 2016) 
 Clean Power Plan. (Hogan, 2015) 
 Other? 
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ELECTRICITY MARKET Pricing and Demand 
A limiting case illustrates a key issue.  Electricity market design with even complete penetration by 
zero-variable cost renewables would follow the same analysis.   But scarcity pricing would be 
critical to provide efficient incentives. 
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ELECTRICITY MARKET Distributed Energy Resources 
The integration of flexible distributed energy resources presents challenges and opportunities for 
“Reforming the Energy Vision.” 

“Drawing from an exhaustive analysis of trends in technology, markets, and environmental policy, the 
Commission has concluded that its core statutory duties can no longer be met with the utility 
regulatory model of the previous century. … The ratemaking changes adopted in this order add to 
other actions taken by the 
State and by this Commission 
under REV to enable the 
growth of a retail market and 
a modernized power system 
that is increasingly clean, 
efficient, transactive and 
adaptable to integrating and 
optimizing resources in front 
of and behind the meter.”  
(New York Public Utilities Commission, 
2016) 

 
“Choose the core electric 
products to be transacted on 
the financial digital platform. 
The paper presents a 
rationale for choosing real 
energy (real power), reactive 
power, and reserves.” (Tabors, 
Parker, Centolella, & Caramanis, 2016) 
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